机器的学习能力和人的智力是不一样的。

首页-行业资讯-科技资讯-机器的学习能力和人的智力是不一样的。
2019-05-05 10:35:17

———————————————————————————————————————


 

 机器学习是一个类似的过程。它通过数学公式形式,建立机器的感知能力。机器内部算法记住各种物体的特征,然后产生辨别物体的能力。

机器的学习能力和人的智力是不一样的。人们不能期待机器有人的智力并完全具有人的智能。

 

机器学习的三个主要缺陷:

1. 表述能力(Representation)。用数学语言表述一个复杂问题是一件困难的事情,特别是要模拟人脑。到目前为止,机器学习只能回答简单问题,这是什么?这个多少钱?下一个是什么?

2. 过度拟合(overfitting)。机器学习似乎可以学习我们关心的事情,事实上它们不能。机器学习系统只是记住了数据,其实它并没有理解数据。过度拟合指的是算法从数据中学到了太多关系,而这些关系在现实中是不存在的。经济学上说,如果一个少胳膊的人跑得快,你不能得出结论,少胳膊可以使人跑得快。

3. 在数据有限的情况下,机器学习缺少举一反三的能力(Lack of     effective generation because of limited data)。机器只能学会你教它的东西。如果你给机器提供不好的数据,那么它产生的结果就难以预料。微软搞了一个对话机器人(Taylor), 它很快就学会了许多脏话。


机器学习的三种主要算法(Machine Learning Algorithms):

1. 监督学习 (Supervised Learning)。 监督学习就像我们人类在老师指导下学习。老师给学生举出有用的例子,学生记住例子并推导出一般规律。统计回归,数据分类,图像识别,语音识别,机器翻译,自动驾驶车等,都是监督学习。

2. 无监督学习 (Unsupervised Learning)。无监督学习是让机器从数据中寻找规律,把数据或者物品分类,给人提供意想不到的内在联系。我们在网上购物时,有些广告会弹出来,这就是机器学习的结果,它认为,你对其它相关物品也会感兴趣。

3. 加强学习 (Reinforcement Learning)。加强学习就是给算法提供没有结论的例子,但是给机器提供正面或者负面的反馈。这跟人类的反复试验学习方法一样。简单的例子就是计算机学习玩电子游戏。Google 的 DeepMind 就是一个加强学习的例子,它刚开始游戏玩得不好,但是后来变成冠军。

机器学习的三种主要方法(Three most promising AI learning approaches):

1. 朴素的贝叶斯 (Naive Bayes)。 这种算法可以比医生做出更精确的诊断结果。它也可以探测垃圾邮件和文字里的情绪。这种方法也经常被用来跟踪互联网上的大数据传运。

朴素的贝叶斯


2. 贝叶斯网络(Bayesian Networks, Graph Form)。这种图像可以用概率的形式表示复杂的世界。

贝叶斯网络

3. 决策树 (Decision Trees) 。决策树表现符号最佳。决策树历史悠久,它表示了人工智能的决策过程并因此而得名。

决策树


人工智能的深度学习。机器学习是人工智能的一部分,深度学习是机器学习的一部分,所以深度学习在人工智能里是一个很小的领域,但是媒体好像特别喜欢关注深度学习。

深度学习是人工智能模仿人的大脑神经系统的学习方法。人的大脑有神经网络,所以深度学习是用电脑模仿人的神经网络。

想象一下我们要过滤水,让水经过一层一层的过滤系统,最后得到干净的水。

同样,深度学习是把输入数据经过一层一层的信息网,通过一层一层的演算,最后得出结论。我自己的理解,最简单的神经网络就是线性回归,或者逻辑回归,用户输入数据,电脑做回归,建立输入和输出之间的关系。复杂一些的神经网络,每一层对数据做不同的处理和变换,调整变换的系数和权重,最后产生结果。


 
会腾软件(www.canevent.com)综合整理仅供参考、交流之目的。来源网络如涉及版权等问题,请及时与我们联系,我们将在第一时间处理,非常感谢!
 

马上索取「您的需求」 解决方案

 
相关内容推荐阅读:
 
 
 
 
Tips:欢迎关注 「会腾软件」 微信公众号或微博@canevent会腾软件 获取更多资讯。


会腾软件